Question		on	Answer	Marks	Guidance
1	(a)	(i)	(linear momentum =) mass x <u>velocity</u>	B1	Allow : momentum = $m v$ where m is $mass$ and v is $velocity$
					Not: mass x speed
		(ii)	Any two from: momentum / vector has magnitude and direction velocity is a vector A product of a scalar and vector is a vector	B1 x 2	
	(b)		$a = \Delta v / \Delta t = 7.5 / 0.28$		
			$a = 27 \text{ (m s}^{-2})$		Ignore sign
			a = 21 (1115)	A1	
		2	F = ma		Possible ecf from b(i) for acceleration
			F = 850 x 27	C1	
			$= 2.3 \times 10^4 \text{ (N)}$	A1	
		(ii)	$E = \frac{1}{2}mv^2$		
			$0.45 \times 10^6 = \frac{1}{2} \times 850 \times v^2$	C1	Mark is for correct substitution
			$V = \sqrt{(2 \times 0.45 \times 10^6 / 850)}$		
			$V = 33 \text{ (m s}^{-1})$	A1	Note: Possible POT error
	(c)		$m_1 u = (m_1 + m_2)v$		
			850 x 7.5 = (850 + 1200) <i>v</i>	C1	Mark is for correct substitution
			v = 850 x 7.5 /2050		
			$v = 3.1 \text{ (m s}^{-1})$	A1	
			Total	10	

Question	Expected Answers	Marks	Additional guidance
2 (a)(i)	Total momentum is constant/conserved	B1	"total momentum before = total momentum after"
			Allow $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ or equivalent
			Do not accept "momentum is constant"
	For a closed system/provided no external forces (WTTE)	B1	Do not accept "momentum is conserved"
(a)(ii)	Some <u>loss</u> of <u>kinetic</u> energy (OR KE OR E_K)(during the collision)	B1	Allow answers in terms of Coeff't of Res.
			Coeff't of Restitution < 1
			e.g. speed of separation/speed of approach
(a)(iii) 1	(2.4x3.0) - (1.2x2.0) = 3.6v	C1	must see –ve sign hence 2.67 scores ZERO
	$v = 1.3 \text{ m s}^{-1}$	A1	Allow 4/3 ms ⁻¹ and 1.34 but not 1.4
			4
(a)(iii) 2	Any KE correctly calculated: 10.8J, 2.4J, (or 13.2 or 8.4), 3.18J	C1	ECF from a(iii)1 If 1.3 ms ⁻¹ is used KE after is 3.04
			ECF from a(iii)1 provided final KE is less than
	13.2 and 3.18 (or any value between 3.2 and 3.0) <u>seen</u>	A1	initial KE
			Allow answers in terms of Coeff't of Res. e.g.
(5.) (1)			speed of separation/speed of approach = 0/5 =0
(b)(i)	valid sub ⁿ in V = π r ² h: e.g. π x 5.0 ² x12 x 5.0 (= 1500 π /4710 m ³)	C1	
	$m = V\rho = \pi \times 5.0^2 \times 12 \times 5.0 \times 1.3 = 6126 \text{ kg}$	A1	Do not accept a bald answer of 6000
(b)(ii) 1	momentum = $6130 \times 12 = 7.4$ (or 7.36) x 10^4 (kg m s ⁻¹)	B1	Allow 7.2x10 ⁴ if 6000 kg used & ecf from (b)(i).
(b)(ii) 2	F = 73600/5	C1	
	F = 14700 N	A1	Accept 14400 if 7.2x10 ⁴ is calculated in 1
(b)(ii) 3	mass of helicopter = 14700/9.81 = 1500 kg	B1	Allow ecf from (b)(ii)2. Allow g=10 N/kg
	Total	13	

Question		ion	Expected Answers		Additional guidance
3	а	i	Force is proportional to the <u>rate of change</u> of <u>momentum</u> (QWC This mark can only be scored if momentum is spelled correctly)	B1	Allow "equal" instead of proportional, allow "change in momentum over time" (WTTE) Do not allow F = ma or in words
		ii	When one body exerts a force on another the other body exerts an <u>equal</u> (in magnitude) <u>and opposite</u> (in direction) force on the first body (WTTE)	B1	Must refer to two bodies. Do not allow a bare "Action and reaction are equal and opposite".
	р	-	area: number of squares correctly counted: 20 - 24 (500 – 600) = 2.2 Ns {allow 2.0 to 2.4}	C1 A1	First mark for correct number of squares Second mark for correct conversion to Ns If 2 \(\Delta \) assumed, area = 1.68 Ns and scores 1 mark 1680 scores 0 (2 errors) but 2200 scores 1 mark
		ii	Impulse QWC must be spelled correctly	B1	No not allow change of momentum.
		iii	recall of Impulse = change in momentum OR I = mv OR mv –mu (mv = 2.2 hence v = $2.2/0.046$) v = 47.8 ms ⁻¹ (hence about 50) (2.0 gives 43.5, 2.1 45.7, 2.3 50, 2.4 52.2)	C1 A1	Allow 'Area = mv' Allow ecf from cand's value for (b)(i): e.g. mv = 1.68 v = 36.5 ms ⁻¹ and scores 2 marks mv = 2200 v = 47800 ms ⁻¹ also scores 2marks! (ecf)
		iv	initial horizontal velocity = 50cos42 = (37.2 ms ⁻¹) initial vertical velocity = 50sin42 = (33.5 ms ⁻¹) time taken to reach maximum height = 33.5/9.8 (= 3.41 s) total time to reach ground = 2x 3.41 = 6.82 s hence distance = 50cos42xtotal time = 37.2x6.82 = 253 m any valid assumption: eg no air resistance / horizontal velocity is constant/ acceleration due to gravity is 9.8 (or 10) ms ⁻² / ball follows a parabolic or	C1 C1 C1 A1	Allow 1 mark for correct identification of cosine and sine components of v, without substitution. Allow ecf for cand's value of v throughout e.g if 47.8 is used for v, distance = 232 m and this scores four marks. if 47800 is used distance = 2.32 x 10 ⁸ m! Also allow "only the gravitational force is
			symmetrical path (WTTE). Total	12	acting" "no friction" "only gravity"